Constructions of linear codes with two or three weights from vectorial dual-bent functions
نویسندگان
چکیده
Linear codes with few weights are an important class of in coding theory and have attracted a lot attention. In this paper, we present several constructions q-ary linear two or three from vectorial dual-bent functions, where q is power odd prime p. The weight distributions the constructed completely determined. We illustrate that some known literature can be obtained by our constructions. special cases, meet Griesmer bound. Furthermore, based on codes, obtain secret sharing schemes interesting access structures.
منابع مشابه
Linear codes with two or three weights from quadratic Bent functions
Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, several classes of p-ary linear codes with two or three weights are constructed from quadratic Bent functions over the finite field Fp, where p is an odd prime. They include some earlier linear codes as special cases. The weight distributions...
متن کاملConstructions of Bent Functions from Two Known Bent Functions
A (1,-1)-matrix will be called a bent type matrix if each row and each column are bent sequences. A similar description can be found in Carlisle M. in which the authors use the properties of bent type matrices to construct a class of bent functions. In this paper we give a general method to construct bent type matrices and show that the bent sequence obtained from a bent type matrix is a genera...
متن کاملOn the Primary Constructions of Vectorial Boolean Bent Functions∗
Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...
متن کاملOn the Existence and Constructions of Vectorial Boolean Bent Functions
Recently, one of the hot topics on vectorial Boolean bent functions is to construct vectorial Boolean bent functions in the form Tr m(P (x)) from Boolean bent functions in the form Tr 1 (P (x)), where P (x) ∈ F2n [x]. This paper first presents three constructions of vectorial Boolean bent functions in the form Tr m(P (x)), where two of them give answers to two open problems proposed by Pasalic ...
متن کاملLinear Codes With Two or Three Weights From Some Functions With Low Walsh Spectrum in Odd Characteristic
Linear codes with few weights have applications in authentication codes, secrete sharing schemes, association schemes, consumer electronics and data storage system. In this paper, several classes of linear codes with two or three weights are obtained from some functions with low Walsh spectrum in odd characteristic. Numerical results show that some of the linear codes obtained are optimal or al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2023
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2023.113448